Cellular and membrane properties of alpha and beta thalassemic erythrocytes are different: implication for differences in clinical manifestations.

نویسندگان

  • S L Schrier
  • E Rachmilewitz
  • N Mohandas
چکیده

To define how excess unpaired alpha- and beta-globin chains in severe beta-thalassemia and severe alpha-thalassemia interacting with the membrane might alter cellular and membrane properties, we performed a series of biophysical and biochemical analyses on erythrocytes obtained from affected patients. Detailed analysis of cellular and membrane deformability characteristics showed that both forms of thalassemic erythrocytes have excess surface area in relation to cell volume and increased membrane dynamic rigidity. The deformability characteristics of thalassemic erythrocytes in hypertonic media differed significantly from that of normal erythrocytes of identical cell density. These findings suggest that dynamic rigidity of thalassemic erythrocytes is influenced not only by cytoplasmic viscosity determined by cell hemoglobin concentration but also by the extent and type of globin interacting with the membrane. In contrast to the above-noted similarities, major differences were noted in the mechanical stability of the alpha- and beta-thalassemic membranes and in their state of cell hydration. While the mechanical stability of alpha-thalassemic membranes was normal or marginally elevated, the stability of beta-thalassemic membranes was markedly decreased to half the normal value. Cell-density analysis showed that the alpha-thalassemic erythrocytes were uniformly less dense than normal, while beta-thalassemic erythrocytes had a broad-density distribution, with all populations having both lower and higher than normal density values, implying cellular dehydration in beta-thalassemia and not in alpha-thalassemia. Membrane-protein analysis revealed that excess globin chains were bound to the membrane skeletons of both alpha- and beta-thalassemic erythrocytes, with the highest amounts being found in membrane skeletons derived from erythrocytes of splenectomized individuals with beta-thalassemia intermedia. These data demonstrate that interaction of excess alpha- and beta-globin chains with membranes produces different cellular changes and suggest that the observed differences in the pathophysiology of alpha- and beta-thalassemias may be related to different cellular effects induced by the excess in beta- and alpha-globin chains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Globin-chain specificity of oxidation-induced changes in red blood cell membrane properties.

We have previously shown that excess unpaired alpha- and beta-globin chains in severe alpha- and beta-thalassemia interacting with the membrane skeleton induce different changes in membrane properties of red blood cells (RBCs) in these two phenotypes. We suggest that these differences in membrane material behavior may reflect the specificity of the membrane damage induced by alpha- and beta-glo...

متن کامل

Oxidative red blood cell membrane injury in the pathophysiology of severe mouse beta-thalassemia.

In severe human beta-thalassemia, the pathophysiology relates to accumulation of excess alpha-globin chains at the membrane. One hypothesis is that membrane-associated alpha-globin by virtue of it's iron or hemichromes produces oxidation of adjacent membrane proteins. The availability of a mouse model of severe beta-thalassemia, as well as a transgenic (thalassemic-sickle) mouse that expresses ...

متن کامل

Inactivation of artemisinin by thalassemic erythrocytes.

Plasmodium falciparum infecting alpha-thalassemic erythrocytes (Hb H or Hb H/Hb Constant Spring) is resistant to artemisinin derivatives. Similar resistance, albeit at a much lower level, is shown by the parasite infecting beta-thalassemia/Hb E erythrocytes. The resistance is due to host-specific factors, one of which is the higher uptake of the drugs by thalassemic erythrocytes than normal ery...

متن کامل

Antioxidant defense status of red blood cells of patients with beta-thalassemia and Ebeta-thalassemia.

Anemia in beta-thalassemia is caused by a combination of ineffective erythropoiesis and premature hemolysis of RBC in the peripheral circulation. Excess of the alpha-globin chain present in beta-thalassemic RBC is mainly responsible for oxidative damage of erythrocyte membrane protein. The activities of glucose-6-phosphate dehydrogenase, glutathione reductase, glutathione peroxidase, and glutat...

متن کامل

Oxidative damage and erythrocyte membrane transport abnormalities in thalassemias.

Oxidative damage induced by free globin chains has been implicated in the pathogenesis of the membrane abnormalities observed in alpha and beta thalassemia. We have evaluated transport of Na+ and K+ in erythrocytes of patients with thalassemias as well as in two experimental models that use normal human red blood cells, one for alpha thalassemia (methylhydrazine treatment, alpha thalassemia lik...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 74 6  شماره 

صفحات  -

تاریخ انتشار 1989